Capacitance Estimation Method of DC-Link Capacitors for BLDC Motor Drive Systems

نویسندگان

  • Jong-Joo Moon
  • Won-Sang Im
  • June-Ho Park
  • Jang-Mok Kim
چکیده

This paper proposes a capacitance estimation method of the dc-link capacitor for brushless DC motor (BLDCM) drive systems. In order to estimate the dc-link capacitance, the BLDCM is operated in quadrant-II or -IV among four-quadrant operation. Quadrant-II and -IV are called reverse braking and forward braking, respectively. During the braking operation of the BLDCM, the capacitor is charged by the phase current and then the voltage is increased during the braking operation time. The capacitor current and voltage can be obtained by using the phase current sensor of BLDCM and the dc-link voltage sensor. The capacitance and be easily obtained by the voltage equation of the capacitor. The proposed method guarantees the reliable and simple calculation of the dc-link capacitance without additional hardware system except several the sensors already installed for the motor control system. The effectiveness of the proposed method is verified through both the simulation and experimental results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torque Ripple Reduction of Electrolytic Capacitor-less BLDC Motor Drive

Brushless DC motors called BLDC are used in many industrial and non-industrial applications today for reasons such as very high efficiency, easy control method and high reliability, and their use is increasingly used in mass production applications, especially home appliances. But these motors require the use of an electric drive, even in constant speed applications. Commercialization of these ...

متن کامل

The Influence of DC-Link Voltage on Commutation Torque Ripple of Brushless DC Motors with Two-Segment Pulse-width Modulation Control Method

The commutation process causes current ripple to be generated in the drive system of brushless DC (BLDC) motor. This, in turn, leads to output torque ripple. Mechanical vibration and acoustic noise are its influences which are undesirable phenomenon in some applications. A new method is presented in this paper which reduces torque ripple and commutation period in the entire range of motor speed...

متن کامل

A Novel Method for Commutation Torque Ripple Reduction of Four-Switch, Three-Phase Brushless DC Motor Drive

This paper presents an original study on the generated torque ripples of phase commutation in the Four-Switch, Three-Phase Inverter (FSTPI) Brushless DC (BLDC) motor drive which is suitable for low cost applications. Analytic values of torque ripple and commutation duration are obtained for different operation conditions. Moreover, limitation on the speed range operation caused from splitti...

متن کامل

مروری بر روش های تحلیل، کنترل، پیاده سازی و ارزیابی درایوهای موتورهای DC بدون جاروبک

Nowadays, due to significant increase in demands of electric motors for residential, commercial and industrial applications, and for optimum consumption of electrical energy, the design and manufacturing of high efficiency motors and related variable speed drives have been considered by many suppliers. Among several kinds of motors, the brushless DC (BLDC) motor is employed in many applications...

متن کامل

Implementation of a Novel Brushless DC Motor Drive based on One-Cycle Control Strategy

In this paper, one-cycle control (OCC), as a constant-frequency PWM control strategy for current control of a six-switch brushless dc (BLDC) motor drive is investigated. Developed current regulator is a unified controller and PWM modulator. Employing the one-cycle control strategy, decreases the torque ripple resulted from the conventional hysteresis current controllers and therefore, the vibra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016